
2019-09-06

1

ECE 150 Fundamentals of ProgrammingECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

dwharder@uwaterloo.ca hiren.patel@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D.

dwharder@uwaterloo.ca hiren.patel@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Arithmetic operators

2
Arithmetic operatorsArithmetic operators

Outline

• In this lesson, we will:

– Define binary arithmetic operators

• Addition, subtraction, multiplication and division

• Integer division

• Remainder/modulus operator

• Upcasting integers to floating-point

– Order of operations

• Upcasting and order of operations

– Unary arithmetic operators

• Negation and “+”

3
Arithmetic operatorsArithmetic operators

Arithmetic operations

• Most engineering computations involve simulations of the real
world, requiring the application of mathematics and modelling

– The A380 double-decker jumbo jet was simulated entirely in
software prior to being built for the first time…

– Processors and circuits are simulated using mathematical models

• Here we see a mathematical model of a quantum socket [1]:

4
Arithmetic operatorsArithmetic operators

Arithmetic operations

• A binary arithmetic operator takes two numerical operands and
returns the result of the operation

– The operands may be integers or floating-point

• The available binary arithmetic operators are

Operation Operator Integers Floating-point

Addition + 3 + 5 3.2 + 7.3

Subtraction – 7 - 6 9.5 - 4.1

Multiplication × 8*9 1.5*2.7

Division ÷ 1/2 4.5/9.6

Note: For clarity, it is usual to place spaces around + and -
but no spaces around * or /

2019-09-06

2

5
Arithmetic operatorsArithmetic operators

Arithmetic operations

• Operands can be literal integers and floating-point numbers, as well
as identifiers

6.0*width*height PI*radius*radius

• Juxtaposition is never acceptable to represent multiplication

• If you entered 2xx - 3xy + 4yy, this would result in the compiler

signalling an error

– 2xx is neither a valid integer, floating-point number or identifier

• There is no operator for exponentiation

– Exponentiation requires a function call to a C++ library

2 22 3 4x xy y  2*x*x - 3*x*y + 4*y*y

6
Arithmetic operatorsArithmetic operators

Order of operations

• The compiler uses the same rules you learned from secondary
school:

– Multiplication and division before addition and subtraction

• In all cases, going from left to right

• Try the following:

std::cout << (1 + 2 + 3 + 4 * 5 * 6 + 7 + 8 + 9);

std::cout << (1 * 2 * 3 + 4 * 5 * 6 + 7 + 8 + 9);

std::cout << (1 * 2 * 3 * 4 * 5 + 6 + 7 + 8 + 9);

std::cout << (1 * 2 * 3 * 4 * 5 - 6 * 7 + 8 * 9);

7
Arithmetic operatorsArithmetic operators

Order of operations

• Parentheses can be used to enforce the order in which operations
are performed

• Common mistakes include

k/m*n when they mean k/(m*n) or k/m/n

k/m+n when they mean k/(m + n)

k+m/n when they mean (k + m)/n

8
Arithmetic operatorsArithmetic operators

Integer division

• In C++, the result of an arithmetic operation on integers must
produce an integer

– This is a problem for division

std::cout << (1/2); // outputs 0

std::cout << (7/3); // outputs 2

std::cout << (-11/4); // outputs -2

std::cout << (-175/-13); // outputs 13

• The result is the quotient discarding any remainder

175 6
13

13 13
 

534 3
35

15 5
 

2019-09-06

3

9
Arithmetic operatorsArithmetic operators

Order of operations

• Here are some further examples that depend on integer division:

std::cout << (1 / 2 + 3 * 4 + 5 * 6 * 7 - 8 * 9);

std::cout << (1 + 2 * 3 * 4 / 5 * 6 * 7 * 8 / 9);

std::cout << (1 * 2 + 3 + 4 * 5 * 6 / 7 * 8 + 9);

• For example:

(1 / 2) + (3 * 4) + (5 * 6 * 7) - (8 * 9)
0 + 12 + 210 - 72 = 150

10
Arithmetic operatorsArithmetic operators

Integer remainder

• To find the remainder of a division, use the modulus operator

– Also called the remainder operator

std::cout << (1 % 2); // outputs 1

std::cout << std::endl;

std::cout << (7 % 3); // outputs 1

std::cout << std::endl;

std::cout << (-11 % 4); // outputs -3

std::cout << std::endl;

std::cout << (-175 % -13); // outputs -6

std::cout << std::endl;

• For any integers m and n, it is always true that

(n/m)*m + (n % m) equals n

11
Arithmetic operatorsArithmetic operators

Integer remainder

• Let’s take a closer look at:

(n/m)*m + (n % m)

• Don’t we know from mathematics that as long as m ≠ 0,

• C++ evaluates one expression at a time

– If the compiler sees (7/3)*3,

• It first will have (7/3) calculated, which evaluates to 2

• It then proceeds to calculate 2*3 which is 6

n
m n

m
  ?

12
Arithmetic operatorsArithmetic operators

Spacing around operators

• In C++, you can put any amount of whitespace between operators
and their operands:

std::cout << ((n/m)*m + (n % m));

std::cout << ((n/m)*m+(n%m));

std::cout <<

((n

/ m)* m +

(n% m))

;

• We recommend:

– Putting one space between operands and +, - and %

– Juxtaposing operands with * and / operands

• Forcing your self soon makes it habitual

– You will not even think about it when you type…

2019-09-06

4

13
Arithmetic operatorsArithmetic operators

Upcasting

• Suppose the compiler sees:

3.2/2

• Does it use floating-point division, or integer division?

– The only way for this to make sense is for the compiler to interpret
the 2 as a floating-point number

– This process is called upcasting

• Literals are upcast by the compiler

14
Arithmetic operatorsArithmetic operators

Order of operations and upcasting

• Again, C++ is very exact when upcasting occurs:

– Only when one operand is a floating-point number and the other is
an integer is the integer upcast to a floating-point number

• What is the output of each of the following? Why?

std::cout << (10.0 + (1 / 2) * 3.0);

std::cout << (10.0 + 1 / 2 * 3.0);

std::cout << (10.0 + 1 / (2 / 3.0));

15
Arithmetic operatorsArithmetic operators

Unary operators

• There are two unary operators for arithmetic:

– Unary negation operator changes the sign of what follows:

std::cout << -(1 + 2 + 3);

std::cout << -(2*3*4);

std::cout << -(1 + 2*3);

– Unary neutral operator leaves the sign unchanged:

std::cout << +(1 + 2 - 5);

std::cout << +(-2*3*4);

std::cout << +(1 - 2*3);

16
Arithmetic operatorsArithmetic operators

Arithmetic expression

• If all of the variables are int, the result of these is an int:
35

a

a + b + c + d + 1

12*(a + b)*(1 - b)

(a + b + c)/10;

(a - 1)*a*(a + 1)

-a + b

+c

• If all of the variables are double, the result of these is a double:
35.0

a

a + b + c + d + 1.3

12.5*(a + b)*(1.0 - b)

(a + b + c)/10.5;

(a – 1.7)*a*(a + 1.7)

-a + b

+c

2019-09-06

5

17
Arithmetic operatorsArithmetic operators

Arithmetic expression

• We can now make the following statements:

– An integer arithmetic expression will always evaluate to an integer

• We can make an identical description of floating-point arithmetic
expressions

18
Arithmetic operatorsArithmetic operators

Summary

• Following this presentation, you now:

– Understand the binary arithmetic operators in C++

• Addition, subtraction, multiplication and division

– The effect of integer division and the remainder operator

– Upcasting integers to floating-point

– Understand the order of operations and upcasting

– The two unary arithmetic operators

19
Arithmetic operatorsArithmetic operators

References

[1] Thomas McConkey, a simulation of a 6 GHz microwave signal
transmitting through a coaxial pogo pin onto a micro-coplanar
waveguide transmission line of a thin film superconducting
aluminium (i.e., a quantum socket). Developed with the Ansys
software HFSS.

[2] Wikipedia,
https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Arithmetic_operators

[3] cplusplus.com tutorial,

http://www.cplusplus.com/doc/tutorial/operators/

[4] C++ reference,

https://en.cppreference.com/w/cpp/language/operator_arithmetic

20
Arithmetic operatorsArithmetic operators

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Arithmetic_operators
http://www.cplusplus.com/doc/tutorial/operators/
https://en.cppreference.com/w/cpp/language/operator_arithmetic

2019-09-06

6

21
Arithmetic operatorsArithmetic operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

22
Arithmetic operatorsArithmetic operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

