L]

ECE 150 Fundamentalsof Programming

Douglas Wilhelm Harder, M.Math. LEL

awaterloo.ca hiren.patelG

uglas Wilhelm Harder and Hiren Patel.
‘Some rights reserve

Arithmetic operations

* Most engineering computations involve simulations of the real
world, requiring the application of mathematics and modelling

— The A380 double-decker jumbo jet was simulated entirely in
software prior to being built for the first time...

— Processors and circuits are simulated using mathematical models

* Here we see a mathematical model of a quantum socket [1]:
|E — Field|
H

Outline

* In this lesson, we will:
— Define binary arithmetic operators
< Addition, subtraction, multiplication and division
« Integer division
« Remainder/modulus operator
« Upcasting integers to floating-point
— Order of operations

+ Upcasting and order of operations
— Unary arithmetic operators
* Negation and “+”

Arithmetic operations

* A binary arithmetic operator takes two numerical operands and
returns the result of the operation

— The operands may be integers or floating-point

+ The available binary arithmetic operators are

Operation Operator Integers Floating-point
Addition + 3+5 3.2 +7.3
Subtraction - 7 -6 9.5 - 4.1
Multiplication X 8*9 1.5*%2.7
Division + 1/2 4.5/9.6

Note: For clarity, it is usual to place spaces around + and -

1

eE but no spaces around * or / .

2019-09-06

o

Arithmetic operations

» Operands can be literal integers and floating-point numbers, as well
as identifiers
6.0*width*height PI*radius*radius

+ Juxtaposition is never acceptable to represent multiplication
2x2 - 3xy + 4y2—> 2¥x*x - 3kx*ty + 4¥yry

» If you entered 2xx - 3xy + 4yy, this would result in the compiler
signalling an error
— 2xx is neither a valid integer, floating-point number or identifier

+ There is no operator for exponentiation
— Exponentiation requires a function call to a C++ library

. =T

Order of operations

» Parentheses can be used to enforce the order in which operations
are performed

+ Common mistakes include
k/m*n whentheymean k/(m*n) ork/m/n
k/m+n whenthey mean k/(m + n)
k+m/n whentheymean (k + m)/n

1

ot .

2019-09-06

Order of operations

* The compiler uses the same rules you learned from secondary

school:

— Multiplication and division before addition and subtraction

« In all cases, going from left to right

» Try the following:
std
std
std
std

ttcout << (1 + 2 + 3
ticout << (1 * 2 * 3
ticout << (1 * 2 * 3
ticout << (1 * 2 * 3

* + o+
FNENNEFNENS

*

*

v unon
*

a

* + + o+

NN NN

Integer division

+9);
+9);
+9);
*9);

+ o+ o+ o+
0 00 00 00

e In C++, the result of an arithmetic operation on integers must

produce

an integer

— This is a problem for division

std
std
std
std

sicout << (1/2);
ricout << (7/3);
ticout << (-11/4);
ricout << (-175/-13);

//
//
//
//

outputs
outputs
outputs
outputs

» Theresult is the quotient discarding any remainder

E=13+
13

2235
15

X

.

1

2019-09-06

e
w7
Order of operations Integer remainder

* Here are some further examples that depend on integer division: * To find the remainder of a division, use the modulus operator

std::cout << (1 / 2+ 3 *4+5%*6*7-8%*09); — Also called the remainder operator

std::cout << (1 +2 *3 *4 /5 *¢6*7*8/9); std::cout << (1% 2); // outputs 1

std::cout << (1 * 2+ 3 +4 *5*6 /7 *8+9); std::cout << std::endl;

std::cout << (7 % 3); // outputs 1

std::cout << std::endl;
std::cout << (-11 % 4); // outputs -3

+ For example: std::cout << std::endl;
(1/2)+(3%4)+(5%6*7)-(8%*9) std::cout << (-175 % -13); // outputs -6
%] + 12 + 210 - 72 = 150 std::cout << std::endl;

» For any integers m and n, it is always true that
(n/m)*m + (n % m) equals n

e = v =

R

Integer remainder Spacing around operators
» Let’s take a closer look at: * In C++, you can put any amount of whitespace between operators
(n/m)*m + (n % m) and their operands:
std::cout << ((n/m)*m + (n % m));
+ Don’t we know from mathematics that as long as m # 0, std::cout << ((n/m)*m+(n%m));
n std: :cout <<
—-m=n?
p” ((n
/ m)* m +
+ C++ evaluates one expression at a time (n% m))
— If the compiler sees (7/3)*3, 5
« It first will have (7/3) calculated, which evaluates to 2 * Werecommend:
« It then proceeds to calculate 2*3 which is 6 — Putting one space between operands and +, - and %

— Juxtaposing operands with * and / operands
» Forcing your self soon makes it habitual
— You will not even think about it when you type...

ot .

1]
i

1

ot .

Upcasting

» Suppose the compiler sees:
3.2/2
» Does it use floating-point division, or integer division?
— The only way for this to make sense is for the compiler to interpret
the 2 as a floating-point number

— This process is called upcasting
« Literals are upcast by the compiler

. =T

Unary operators

» There are two unary operators for arithmetic:
— Unary negation operator changes the sign of what follows:
std::cout << -(1 + 2 + 3);
std::cout << -(2*3*4);
std::cout << -(1 + 2*3);

— Unary neutral operator leaves the sign unchanged:
std::cout << +(1 + 2 - 5);
std::cout << +(-2*3*4);
std::cout << +(1 - 2*3);

1

ot .

2019-09-06

Order of operations and upcasting

» Again, C++ is very exact when upcasting occurs:

— Only when one operand is a floating-point number and the other is
an integer is the integer upcast to a floating-point number

» What is the output of each of the following? Why?
std::cout << (10.0 + (1 / 2) * 3.0);
std::cout << (10.0 + 1 / 2 * 3.0);
std::cout << (10.0 + 1 / (2 / 3.9));

R

Arithmetic expression

» If all of the variables are int, the result of these is an int:

35
a

a+b+c+d+1

12%(a + b)*(1 - b)

(a + b+ c)/1e;
(a - 1)*a*(a + 1)
-;a+b

+C

« If all of the variables are double, the result of these is a double:
35.0
a
a+b+c+d+ 1.3
12.5%(a + b)*(1.8 - b)
(a + b + c)/10.5;
(a - 1.7)*a*(a + 1.7)
-;a+b

o v M

1

Arithmetic expression

* We can now make the following statements:
— An integer arithmetic expression will always evaluate to an integer

* We can make an identical description of floating-point arithmetic
expressions

References

[1] Thomas McConkey, a simulation of a 6 GHz microwave signal
transmitting through a coaxial pogo pin onto a micro-coplanar
waveguide transmission line of a thin film superconducting
aluminium (i.e., a quantum socket). Developed with the Ansys
software HFSS.

[2] Wikipedia,
https: ki

://en.wikipedia.org/wiki/Operators in C_and C++#Arithmetic_operators

[3] cplusplus.com tutorial,
http://www.cplusplus.com/doc/tutorial/operators/
[4] C++ reference,

https://en.cppreference.com/w/cpp/language/operator_arithmetic

i

2019-09-06

» Following this presentation, you now:
— Understand the binary arithmetic operators in C++
< Addition, subtraction, multiplication and division
The effect of integer division and the remainder operator
Upcasting integers to floating-point

— Understand the order of operations and upcasting

— The two unary arithmetic operators

Acknowledgments

Proofread by Dr. Thomas McConkey and Charlie Liu.

i

https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Arithmetic_operators
http://www.cplusplus.com/doc/tutorial/operators/
https://en.cppreference.com/w/cpp/language/operator_arithmetic

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

2019-09-06

